- 1. On the grid, graph and label the image of point A under each transformation:
- a. Translate down 2, left 4. (label B)
- b. Translate along vector \overrightarrow{PR} . (label C)
- c. Dilate about Q by a factor of 3. (label D)
- d. $T_{<-3,2>}$ (label E)
- e. $D_{P,2}$ (label F)

2a. Graph and label the image of ABCDEF under $T_{\overline{RS}}$ and label its image A'B'C'D'E'F'.

b. What can conclusion can be made about $m\angle AFE$ and $m\angle A'F'E'$? Explain your reasoning.

3a. Graph and label the image of IJKL under $\,D_{{\it P},{\it l}/2}$.

b. What can conclusion can be made about $m\angle LIJ$ and $m\angle L'I'J'$? Explain your reasoning.

4. Point B is the *image* of points C,D,E, and F under each transformation. Graph and label each pre-image point.

a. C is translated along the vector <3, -2>.

b. D is transformed under $T_{\overline{RP}}$.

c. E is dilated about Q by a factor of 4.

d. F is transformed under $D_{R,1/2}$.

5.

a. Precisely describe a transformation that would map ΔABC onto $\Delta A'B'C'.$

b. Is the transformation you described above a Rigid Motion? Explain.

6.

a. Precisely describe a transformation that would map ΔDBC onto $\Delta \text{FBG}.$

b. Is the transformation you described above a Rigid Motion? Explain.

7. Precisely describe the translation that would map ΔRST onto ΔTAB .

8. The line $y = \frac{4}{3}x + 2$ is dilated by a factor of 5 with respect to the origin. Write the equation of the resulting image.

9. The line y = -5x - 14 is dilated by a factor of 1/2 with respect to the origin. Write the equation of the resulting image.